Gamma-band activity in human posterior parietal cortex encodes the motor goal during delayed prosaccades and antisaccades.

نویسندگان

  • Jurrian Van Der Werf
  • Ole Jensen
  • Pascal Fries
  • W Pieter Medendorp
چکیده

Although it is well established that parietal cortex is important in processing sensorimotor transformations, less is known about the neuronal dynamics of this process in humans. Using magnetoencephalography, we investigated the dynamics of parietal oscillatory activity during saccade planning in terms of sensory and motor goal processing. In the experiments, a peripheral stimulus was flashed in either the left or right hemifield, followed by a 1.5 s delay period, after which the subject executed a saccade toward (prosaccade) or away from (antisaccade) the stimulus. In response to stimulus presentation, we observed an initial increase in gamma-band power (40-120 Hz) in a region in the posterior parietal cortex contralateral to the direction of the stimulus. This lateralized power enhancement, which was sustained in a more narrow frequency band (85-105 Hz) during the delay period of prosaccades, mapped to the hemisphere contralateral to the direction of the saccade goal during the delay period of antisaccades. These results suggest that neuronal gamma-band synchronization in parietal cortex represents the planned direction of the saccade, not the memorized stimulus location. In the lower-frequency bands, we observed sustained contralateral alpha (7-13 Hz) power suppression after stimulus presentation in parieto-occipital regions. The dynamics of the alpha band was strongly related to the processing of the stimulus and showed only modest selectivity for the goal of the saccade. We conclude that parietal gamma-band synchronization reflects a mechanism to encode the motor goals in the visuomotor processing for saccades.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Where left becomes right: a magnetoencephalographic study of sensorimotor transformation for antisaccades.

To perform a saccadic response to a visual stimulus, a 'sensorimotor transformation' is required (i.e., transforming stimulus location into a motor command). Where in the brain is this accomplished? While previous monkey neurophysiology and human fMRI studies examined either parietal cortex or frontal eye field, we studied both of these regions simultaneously using magnetoencephalography (MEG)....

متن کامل

Modulation of antisaccades by transcranial magnetic stimulation of the human frontal eye field.

It has been suggested that the frontal eye field (FEF), which is involved with the inhibition and generation of saccades, is engaged to a different degree in pro- and antisaccades. Pro- and antisaccades are often assessed in separate experimental blocks. In such cases, saccade inhibition is required for antisaccades but not for prosaccades. To more directly assess the role of the FEF in saccade...

متن کامل

Neural processes associated with antisaccade task performance investigated with event-related FMRI.

One of the hallmarks of cognitive control is the suppression of prepotent but inappropriate responses. Here we used event-related functional MRI to measure functional brain activation during a stimulus-response incompatibility task. Subjects were instructed before a stimulus appeared either to look at the stimulus (prosaccade) or to look away from the stimulus (antisaccade). Eye movements were ...

متن کامل

Impaired modulation of the saccadic contingent negative variation preceding antisaccades in schizophrenia.

BACKGROUND The contingent negative variation (CNV) is considered to reflect prefrontal functioning and can be observed before manual and ocular motor responses. Schizophrenic patients exhibit reduced CNV amplitudes in tasks requiring manual motor responses. A number of studies has also found normal prosaccades, but delayed antisaccades and an augmented rate of erroneous prosaccades during the a...

متن کامل

Frontoparietal activation with preparation for antisaccades.

Several current models hold that frontoparietal areas exert cognitive control by biasing task-relevant processing in other brain areas. Previous event-related functional magnetic resonance imaging (fMRI) studies have compared prosaccades and antisaccades, which require subjects to look toward or away from a flashed peripheral stimulus, respectively. These studies found greater activation for an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 28 34  شماره 

صفحات  -

تاریخ انتشار 2008